1 . |
Answer : Option D |
Explanation : |
$5^{55}....\infty$ $\cong$ $\infty$, Thus, $4\times5\times45\over \infty$ $\cong$0 |
|
|
2 . |
Answer : Option D |
Explanation : |
From I: no information
From II: tan $\theta$ = $12\over13$
base = 13, highest = 12
But, tan is only a ratio of base and heights, not necessarily true values. |
|
|
3 . |
Answer : Option D |
Explanation : |
I x $3\over7$ = I.Thus, both equations are same
To solve for 2 values, at least 2 different equations are needed. |
|
|
4 . |
Answer : Option D |
Explanation : |
2160 ÷ 6 = 360, 360 ÷ 5 = 72, 72 ÷ 4 = 18, 18 ÷ 3 = 6.
Thus, 420 ÷ 6 ÷ 5 = 14 |
|
|
5 . |
Answer : Option C |
Explanation : |
3 x 6 + 1 = 19, 19 x 5 – 2 = 93, 93 x 4 + 3 = 375, 375 x 3 – 4 = 1589, etc
Thus, 0 x 6 + 1 = 01, 01 x 5 – 2 = 03, 03 x 4 + 3 = 15, 15 x 3 – 4 = 41 |
|
|
6 . |
Answer : Option D |
Explanation : |
$2 - 2^ 2 + 2 = 0, 0 - 3^ 2 + 3 = -6, -6 -4^ 2 + 4 = - 18, etc$
$Thus, 8 - 2^ 2 + 2 = 6, 6 - 3^ 2 + 3 = 0, 0 - 4^ 2 + 4 = -12, etc$ |
|
|
7 . |
Answer : Option A |
Explanation : |
The series is: $x 2^2+1, 3^2+2,4^2+3, etc$
Thus, r =1331 |
|
|
8 . |
Answer : Option D |
Explanation : |
The given series is : 32 + (3 + 2) = 37, 37 + (3 + 7) = 47, 47 + (4 + 7) = 58, etc
Thus, m = 23 + (2 + 3) = 28, n = 28 + (2 + 8) = 38,
O = 38 + (3 + 8) = 49. |
|
|
9 . |
Answer : Option D |
Explanation : |
|
|
|
10 . |
Answer : Option D |
Explanation : |
$S_n$(Sum of n terms) = $a(rn-1)\over r-1$ = $3[1-\sqrt{318-1}]\over \sqrt{3-1}$
=$3(80)\over 0.7$ $\cong$ 343 |
|
|
|
No comments:
Post a comment