| **Answers & Solutions ** | | 1 . | Answer : Option C | Explanation : | Let x and y be two numbers in which x is greater than y
Xy = 1092
(x + y) - (x - y) = 42
2y = 42
y = 21
x = $1092 \over 21$ = 52 | | | 2 . | Answer : Option A | Explanation : | Let Breadth = x metres and length = $3x \over 2$ metres
x $\times$ $3x \over 2$ = $3\over 2$ x 10000
$x^2$ = 10000
x = 100
Length = $3\over 2$ x 100 = 150 m | | | 3 . | Answer : Option B | Explanation : | 7 x 50 = 350 km;
= $350 \over 60 - 50$ = 35 hr
Distance = 35 x 60 = 2100 km | | | 4 . | Answer : Option A | Explanation : | AB = x
A = x + 6
B = x + 1.5
$1\over{x + 6}$ + $1 \over {x + 1.5}$ = $1\over x$ $\Rightarrow$ = 3 | | | 5 . | Answer : Option D | Explanation : | Original price = 100
C.P = 90
S.P = $135 \over 100$ x 100 = 135
% profit = $(135-90) \over 90$ x 100 = $45 \over 90$ x 100 = 50 % | | | 6 . | Answer : Option D | Explanation : | $24+18 - 28 \over 100$ x 16 = 2.24 lakh | | | 7 . | Answer : Option B | Explanation : | $8\over 100$ x 16 x $1\over 5$ x 100,000 = 25600 | | | 8 . | Answer : Option C | Explanation : | I$_1$, sold by A = 16 x $24 \over 100$ x $5\over 8$ x $65 \over 100$ = 1.56 lakh
Similarly,
Total I$_1$ = 1.56 + 0.896 + 0.6912 + 1.44 + 0.4096 + 0.384
= 5.3808 lakh
Arrange = $5.3808 \over 6$ = 89680 | | | 9 . | Answer : Option A | Explanation : | $I_1$ = $4\over 7$ x $7\over 100$ x 16,00,000 = 64,000
$I_2$ = $3\over 7$ x $7\over 100$ x 16,00,000 = 48,000
$I_1$ sold = 64000 x $64 \over 100$ = 40960
$I_2$ sold = 48000 x $55 \over 100$ = 26400
Difference = $I_1 - I_2$ = 14560 | | | 10 . | Answer : Option D | Explanation : | $I_1$ sold by A = 156000
$I_1$ sold by F = 38400
Required % = $156000 \over 38400$ x 100 = 406.25 | | | | |

## No comments:

## Post a comment