| Answers & Solutions | | 1 . | Answer : Option A | Explanation : | $34\times55\times5\times7\over100$ + 456.60 = 699.1 + ? $\Rightarrow$654.50 + 456.60 = 699.1 + ? $\Rightarrow$1111.1 = 699.1 + ? $\Rightarrow$? = 1111.1 – 699.1 = 412 | | | 2 . | Answer : Option D | Explanation : | 14 × 627 ÷ 33 $\Rightarrow$$ ?^ 3$ + 141 $\Rightarrow$ $14\times627\over33$ - 141 = ?$^3$ $\Rightarrow$266 – 141 = ?$^3$ $\Rightarrow$125 = ?$^3$ ? = $\sqrt[3]{125}$ = $\sqrt[3]{5\times5\times5}$ = 5 | | | 3 . | Answer : Option C | Explanation : | 2 + $1.5\over5$ + 2 + $1\over6$ - 1 - $3.5\over15$ = $(?)^{1\over3}\over4$ + 1 + $7\over 30$ $\Rightarrow$ 2 + $15\over50$ + 2 + $1\over6$ - 1 - $35\over 150$ - 1 - $7\over 30$ = $(?)^{1\over3}\over4$ $\Rightarrow$( 2 + 2 - 1 - 1 ) + $3\over 10$ + $1\over 6$ - $7\over 30$ - $7\over 30$ = $(?)^{1\over3}\over4$ $\Rightarrow$2 + [$9 + 5 - 7 - 7 \over 30$] = $(?)^{1\over3}\over4$ $\Rightarrow$2 + 0 = $(?)^{1\over3}\over4$ $\Rightarrow$ $(?)^{1\over3}$ = 2 x 4 = 8 $\Rightarrow$? = 8$^3$ = 8 x 8 x 8 = 512 | | | 4 . | Answer : Option B | Explanation : | (80 x 0.40)$^3$$\div$(40 x 1.6)$^3$$\times$(128)$^ 3$ = (2)$^{? + 7}$ $\Rightarrow$(32)$^3$$\div$(64)$^3$$\times$(128)$^ 3$ = (2)$^{? + 7}$ $\Rightarrow$$(2^5)^3$$\div$$(2^6)^3$$\times$$(2^7)^ 3$ = (2)$^{? + 7}$ $\Rightarrow$$(2^{15})\div (2^{18})\times(2^{21})$ = (2)$^{? + 7}$ $\Rightarrow$$(2^{15 - 18 + 21})$ = (2)$^{? + 7}$ $\Rightarrow$$(2^{18})$ = (2)$^{? + 7}$ $\Rightarrow$18 = ? + 7 $\Rightarrow$? = 18 - 7 = 11 Here, $[$ $(a^m)^n$ = $a^{mn}$ $ ; \,\,\, a^m \times a^n = a^{m + n} ; \,\,\, a^m \div a^n = a^{m - n} $ $]$ | | | 5 . | Answer : Option C | Explanation : | $(\sqrt{7} + 11)^2 = (?)^{1\over 3}$ + 2$\sqrt{847}$ + 122 $\Rightarrow$ $(\sqrt{7})^2 + (11)^2 $+ 2$\sqrt{7}$ $\times 11$ = $(?)^{1\over 3}$ + 2$\sqrt{847}$ + 122 $\Rightarrow$ $(?)^{1\over 3}$ = 128 - 122 = 6 ? = 6 x 6 x 6 = 216 | | | 6 . | Answer : Option C | Explanation : | 650 $\times$ $ 24\over 23$ $\times$ $92\over 100$ $\times$ $1\over 6$ = 85 + ? $\Rightarrow$ 104 = 85 + ? $\Rightarrow$ ? = 104 - 85 = 19 | | | 7 . | Answer : Option C | Explanation : | 92 x 576 $\div (\sqrt{1296}) = (?)^3 + \sqrt{49}$ $\Rightarrow$ 92 x 576 $\div (\sqrt{1296}) = (?)^3 + 7$ $\Rightarrow$ 736 = ?$^3$ + 7 $\Rightarrow$ ?$^3$ = 736 - 7 = 729 = 9$^3$ $\Rightarrow$ ?$^3$ = $(9^3)^{1\over3}$ = 9 | | | 8 . | Answer : Option D | Explanation : | 3 + $1\over 4$ + 2 + $1\over 2$ - 1 - $5\over 6$ = $(?)^2 \over 10$ + 1 + $5\over 12$ $\Rightarrow$ 3 + 2 - 1 - 1 + $[$ $1\over 4$ + $1\over 2$ - $5\over 6$ - $5\over 12$ $]$ = $(?)^2\over 10$ $\Rightarrow$ 3 + $[$ $ 3 + 6 - 10 - 5 \over 12 $ $]$ = $?^2\over 10$ $\Rightarrow$ 3 - $1\over 2$ = $?^2\over 10$ $\Rightarrow$ $5\over 2$ = $?^2\over 10$ $\Rightarrow$ $?^2$ = $5 \times 10 \over 2$ = 25 ? = $\sqrt{25}$ = 5 | | | 9 . | Answer : Option A | Explanation : | $(\sqrt{8}\times\sqrt{8})^{1\over 2} + (9)^{1\over2} = (?)^3 + \sqrt{8} - 340$ $\Rightarrow$ 8$^{1\over 2} + 3 = (?)^3 + 8{1\over2}$ - 340 $\Rightarrow$ = 340 + 3 = 343 ? = $\sqrt[3]{343}$ = 7 | | | 10 . | Answer : Option B | Explanation : | $(15 \times 0.40)^4\div(1080 \div 30)^4 \times(27 \div 8)^4 = (3 \times 2)^{? + 5}$ $\Rightarrow$ $6^4 \div (36)^4 \times (216)^4 = (3 \times 2)^{? + 5}$ $\Rightarrow$ $6^4 \div (6)^8 \times (6)^12 = (6)^{? + 5}$ $\Rightarrow$ $6^{4 - 8 + 12} = (6)^{? + 5}$ $\Rightarrow$ $6^{8} = (6)^{? + 5}$ $\Rightarrow$ ? + 5 = 8 $\Rightarrow$ ? = 8 - 5 = 3 | | | | |
No comments:
Post a comment