| Answers & Solutions | | 1 . | Answer : Option C | Explanation : | Total unsold tyres = 40 × 0.4 + 52 × 0.25 + 60 × 0.5 + 70 × 0.2 + 72 × 0.6 + 90 × 0.4 = 152200 | | | 2 . | Answer : Option B | Explanation : | $B_{Sold}$ = 65 × 0.8 = 52 $A_{Unsold}$ = 52 × 0.25 = 13 Ratio = $52\over 13$ = $4\over 1$ i.e., 4 : 1 | | | 3 . | Answer : Option D | Explanation : | Total tyres produced = 45 + 48 + 64 + 62 + 65 + 80 = 364 thousand
Total tyres sold = 45 × 0.5 + 48 × 0.4 + 64 × 0.75 + 62 × 0.6 + 65 × 0.8 + 80 × 0.5 = 218.9 thousand
Total unsold tyres = 364 - 218.9 = 145.1 thousand
Difference = 218.9 - 145.1 = 73.8 thousand | | | 4 . | Answer : Option D | Explanation : | $Sold_A$ = 52 × 0.75 = 39 thousand, $Sold_B$ = 80 × 0.5 = 40 thousand Reqd % = $39\over 40$ x 100 = 97.5 % | | | 5 . | Answer : Option A | Explanation : | $Sold_A$ = 70 × 0.8 = 56 thousand,
$Unsold_B$ = 64 × 0.25 = 16 thousand
% Difference = $56 - 16 \over 16$ x 100 = $4000\over 16$ = 250 % | | | 6 . | Answer : Option B | Explanation : | $Total_D$ = 2400000 x $20\over 100$ = 480000
$Male _ D$ = $480000\over 5$ x 2 = 192000 | | | 7 . | Answer : Option A | Explanation : | $Total_C$ = 2400000 $\times$ $16 \over 100$ = 384000
Non - adults = 384000 $\times$ $28 \over 100$ = 107520 | | | 8 . | Answer : Option D | Explanation : | | | | 9 . | Answer : Option D | Explanation : | $Total_B$ = 2400000 x $18\over 100$ = 432000
$Male_B$ = $432000 \over 9$ x 5 = 240000
$Female_B$ = 432000 - 240000 = 192000
Difference = 240000 - 192000 = 48000 | | | 10 . | Answer : Option D | Explanation : | $Adult_E$ = $75\over 100$[2400000 x $10\over 100$] = 180000
$Male_D$ = $2 \over 5$[2400000 x $20\over 100$] = 192000
Reqd percentage = $180000\over 192000$ x 100 = 93.75 % | | | | |
No comments:
Post a comment